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Outline

- Limitations of the classical theory of solid mechanics
- Peridynamic theory: how it works

- Numerical examples

- Length scales

- Relation between peridynamic and classical theories

- Mathematical consistency and numerical convergence
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Particles vs. continua: the issue

- Standard continuum mechanics is incompatible with the essential
physical nature of particles.
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Continuous body:

Particles:

- Local interactions
- Contact forces
- Continuous distribution of mass
-Smooth deformation

-Nonlocal interactions
-Long-range forces
- Discontinuous distribution of mass
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Particles vs. continua:
Why this issue is important

. Current atomistic-to-continuum coupling methods require
connecting fields that have dissimilar mathematical properties.
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Cracks: the issue

- Standard continuum mechanics is incompatible with the essential
physical nature cracks.

- Can’t apply the PDEs directly on a crack.
- Typical approaches require some fix at the discretized level.

Crack velocity = 7

C —)

4 Cracks:
Body is redefined to exclude crack

-Nonlocal interactions
/ - Discontinuous deformation

py =V -(a(Vy))+b
applies everywhere except the crack. @ Sandia
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‘ Cracks:

Why this is important

- Kinetic relations of fracture mechanics can only be determined in

idealized cases.
- FM assumes geometric length scale >> process zone.

+y Process zone
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Complex crack path in a composite
Distance

The reality of fracture may be too complex to represent in the form

a= f(K)
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What the peridynamic theory seeks to provide

- To predict the mechanics of continuous and discontinuous media with
mathematical consistency.

- Everything should emerge from the same continuum model.

- Why do this?

- Hope to achieve a more general, accurate, elegant, flexible means of
modeling A-to-C coupling and fracture in complex media.
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Strategy of the peridynamic theory

Replace the standard PDEs with integral equations.

- The integral equations involve interaction between points separated by
finite distances (nonlocality).

- The integral equations are not derivable from the PDEs.
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Peridynamics basics:
Horizon and family

e Any point X interacts directly with other points within a finite
distance 0 called the “horizon.”

e The material within a distance 0 of x is called the “family” of x,

H.
e B
(5horizon

H =family of x
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Starting point for peridynamics

Strain energy at x depends collectively on the deformation of the family of x.

Deformation y _ _
Sk Standard: Peridynamic:
dy
W == WY
<8X) X)
Undeformed family of x Deformed family of x

The deformation state is the function that maps each bond & into
its deformed image Y (§).
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Deformation states can contain
a lot of kinematical complexity

,.7:77
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¢ Y (&)

Undeformed bonds connected to x Deformed bonds connected to x

O =

Compare this with standard theory in which small spheres are mapped

into ellipsoids Sandia
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orce state is the work conjugate to the
deformation state

e Suppose we perturb the deformed bond Y (&) by a virtual dis-
placement €. The resulting change in W (x) is

AW = T(E) - ¢
where T(&) is a vector.

e The “force state” T is the work conjugate to Y:

W—I(X—LI@%X@d%

e T is the Frechet derivative of W(Y) — analogous to a stress
tensor.

Deformed family of x

Displace just one bond &
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Peridynamic equilibrium equation

e Total potential energy in 5:
%~ [WX)—b-y) avy
B
e Take first variation. Euler-Lagrange equation is

[ (i %)~ Tl ) v+ bix) =0

e Write this in terms of the "bond force” : Tx|(x — x) Tx'|(x —x)
/ f(x',x) dVy + b(x) = 0. ./ v4>\0 /
" X f(x', x) "
e where the bond force is defined by

f(x',x) = Tix|(x' — x) — T[x]{(x — x')
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Peridynamic equation of motion

e Equilibrium equation:
/ f(x',x) dVy + b(x) = 0.
H

e where

f(x',x) = Tix|{x — x) — T[x](x — x')

e Now use d'Alembert’s principle to get the equation of motion:

p(xX)y(x,t) = Lf(x’,x, t) dVy + b(x,1)
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Continuum material models

- Any material model in the standard theory can be adapted to the
peridynamic theory.

- Example: EMU simulation with large-deformation, strain-hardening,
rate-dependent material model.

- Material model implementation by J. Foster.

Emu

0% strain 100% strain _
_ _ Taylor impact test
Necking under tension

Sandia
National
frame 17 Laboratories



Continuum material models, ctd.

e [he simplest assumption is that all the bonds are independent.

e Equation of motion simplifies to
py(x,t) = / fly(x',t) —y(x,1),x,x) dVi + b(x, 1),
H

e The body is in effect a network of nonlinear springs.

Deformed bond Y (£

mﬁ

Bond elongation = [Y (&)] — [€|

[

»

Bond elongation
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Continuum material models, ctd.

e Can also have materials that have no analogue in the standard theory:

e Example: A material that responds to angle changes between pairs of bonds:

1

W = 5/ (m —0(¢,—€))" dVi

where 0(&, —€) is the deformed angle between bonds & and —&.
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Peridynamic model of a system of
discrete particles

e The family of x could be either continuous or a collection of point
masses or other objects.

Family of x

BN

:mZAX—Xi

A = 3D Dirac delta function
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Discrete particles and PD states

e Consider a set of atoms that interact through an N—body po-

tential:

U(Yl? Y2, - -- ayN)J
Vi,...,yn = deformed positions, x;,...,xy = reference posi-
tions.

e This can be represented exactly as a peridynamic body.

Y1
[ )

® Vs

Yo
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Discrete particles and PD states, ctd.

Define a peridynamic body by:

A~

W(Y,x) = Ax—x0)U(Y {x1—x0), Y (Xo—Xq),..., Y(Xy—Xq)),
p(x) = Z A(x —x;) M,

X1
Mio
Y1 Y (x; — %)
® YS
yoe®
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Discrete particles and PD states, ctd.

After evaluating the Frechet derivative T, find

P (x, 1) = / £ x. 1) dVi

implies

oU
My(x;, t) = ———, =1,...,N
y(xi, ) Dy, Z
In other words, the PD equation of motion reduces to Newton's second
law.
Y1 e

\ Y3

Yo

Sandia
National
frame 23 Laboratories




\

How damage and fracture are modeled

e Bonds can break irreversibly according to some criterion.

e Broken bonds carry no force.

Bond force density |

Bond breakage

L
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Bond breakage forms cracks “autonomously”

ceccecccctsscecsttcaccesnctsanns Broken bond
cececcccccccccnns ceccecccanas Crack path
HP NSRS« S
secccceeear Al e
. o o o AN cececcscccscccses

When a bond breaks, its load is shifted to its neighbors, leading to progressive failure.
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Energy balance for an advancing crack

If the work required to break the bond & is wy(&), then the energy
release rate is found by summing this work per unit crack area (J.
Foster):

G:/O(S/&wo@dws

7

£

Wo

N
7

Bond elongation

There is also a version of the J-integral that applies in this theory.
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- Integral is replaced by a finite sum: resulting method is meshless and
Lagrangian.

EMU numerical method

py(x,t) = / f(x',x,t) dVy + b(x,1)
H

l

pyr =Y f(xp,xi,t) AV; + bl
keH
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Dynamic fracture in a hard steel plate

* Dynamic fracture in maraging steel (Kalthoff & Winkler, 1988)
* Mode-Il loading at notch tips results in mode-| cracks at 70deg angle.
« 3D EMU model reproduces the crack angle.

Experiment
/

S. A. Silling, Dynamic fracture modeling with a meshfree peridynamic code, in Computational Fluid and
Solid Mechanics 2003, K.J. Bathe, ed., Elsevier, pp. 641-644.
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Peeling and tearing

Delamination

Tearing of a membrane:
Cracks are attracted to each other

Ageing and peeling of a thin layer adhesively bonded to a substrate
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Early high speed photograph by Harold Edgerton

(MIT collection)
EMU model of a balloon penetrated http://mit.edu/6.933/www/Fall2000/edgerton/edgerton.ppt

by a fragment
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plitting and fracture mode change in composites

» Distribution of fiber directions between plies strongly influences the way cracks grow.

Typical crack growth in a notched laminate
(photo courtesy Boeing)

EMU simulations for different layups
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Dynamic fracture in PMMA:
Damage features

Microbranching

Mirror-mist-hackle transition®

Microcracks
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Initial defect Surface roughness

EMU damage EMU crack surfaces

National

* J. Fineberg & M. Marder, Physics Reports 313 (1999) 1-108 @ Sandia
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Dynamic fracture in PMMA:
Crack tip velocity

 Crack velocity increases to a critical value, then oscillates.

Crack ¥elocity
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EMU Experiment*

* J. Fineberg & M. Marder, Physics Reports 313 (1999) 1-108
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Example of long-range forces:
Nanofiber network

to van der Waals forces

Nanofiber membrane (F. Bobaru, Univ. of Nebraska)
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- Peridynamic theory: how it works

- Numerical examples

- Length scales

- Relation between peridynamic and classical theories

- Mathematical consistency and numerical convergence
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Should a continuum model have a length scale?

- Any discretization of the local PDEs is nonlocal.

- Is there anything to be gained by moving the length scale to the
continuum model?

- Many physical problems have some natural length scale.
- Sometimes the length scale is obvious, e.qg.,
- Interatomic forces
- Molecular dynamics cannot be done without nonlocality.

.e/. Atom /
/r‘..

¥
12 6
Foorn[2) — (o
“J Tij Tij
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Nonlocality and length scales: surface forces

- Sometimes the length scale is a little less obvious, e.q.
- van der Waals forces that lead to longer-range surface forces.
- Force between a pair of atoms as they are separated:

Fi' ~ 1/7"6

v

- Net force between halfspace and a sphere made of many of these
atoms* occurs over a much larger length scale:

Fsphere ~ 1/D

Sandia
National

See J. Israelachvili, /ntermolecular and Surfaces Forces, pp. 177.
@ Laboratories
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Nonlocality as a result of homogenization

- Homogenization, neglecting the natural length scales of a system, often
doesn’t give good answers.

Stress

Homogenized, local

Indentor

Claim: Nonlocality is an essential feature of a realistic
homogenized model of a heterogeneous material.
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Proposed experimental method for
measuring the peridynamic horizon

- Measure how much a step wave spreads as it goes through a sample.
- Fit the horizon in a 1D peridynamic model to match the observed spread.

A

Free surface
velocity

Visar
Laser \
v
— Peridynamic 1D
T?me
<+—)
//, Spread
Projectile Local model would predict zero spread.
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Peridynamic stress tensor

In any peridynamic body, we can define a tensor field v such that:

e T he force per unit area at x through a plane with normal n is
s =v(x)n

e The peridynamic equation of motion can be written as

pu=V - -v+Db

vn

V- u(x) = / f(x', %) dVi 5
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Convergence of peridynamics
to the standard theory

Suppose the deformation is twice continuously differentiable. If
the horizon is small, the deformation state is well approximated

by
Y () = (Vy)
SO we can write
W(Y) ~ W.(Vy)

and it can be proven that

oW,
OVy

so v is basically a Piola-Kirchhoff stress tensor in a classical hy-
perelastic solid.

V=

= \</ Sandia
National
frame 42 Laboratories



\

Outline

- Limitations of the classical theory of solid mechanics
- Peridynamic theory: how it works

- Numerical examples

- Length scales

- Relation between peridynamic and classical theories

- Mathematical consistency and numerical convergence

frame 43

G

Sandia
National
Laboratories



- Predicted crack growth direction depends
continuously on loading direction

- Plate with a pre-existing defect is subjected to
prescribed boundary velocities.

- These BC correspond to mostly Mode-I loading
with a little Mode-II.

¢ =(0.255"1) [O 0'1]

0 1

e e ‘ '__--u___u.n.--l——.u._-‘

Contours of vertical displacement Contours of damage
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Effect of rotating the grid
in the “mostly Mode-I1" problem

Original grid direction

Network of identical bonds in
many directions allows cracks
to grow in any direction.

Rotated grid direction

Displacement
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Fragmentation example:
Same problem with 4 different grid spacings

Colors are just for
visualization

Ax = 2.00 mm Ax =1.00 mm
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Fragmentation example:
Fragment mass distribution

Cumulative distribution function for 4
grid spacings

COF of Frogment Mass

- D ] | | | | ] | | ] |
— dx = 333 mm
-2 M ——— dy = 200 mm n
— dx = 143 mm
-8 Pl ——— dv = 100 mm i Ax (mm) Mean
2.00mm fragment
7 mass (g)
.6 1 3.33 27.1
ik 1.43mm
g 0.5 " 2.00 37.8
e i 1.43 35.9
2z 7 1.00 (335
.2 . /
o i Solution appears
0 J L L essentially converged
0 10 20 30 410 50 B0 70 BD

Mass (10 *kg)
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Some current research areas

- Peridynamic theory as a coarse-graining method for atomistics.
- Dynamic crack behavior.

- Finite element solution of PD equations.

- Composite (and other) material modeling.

- Fragmentation.

- Material stability.

- Statistical mechanics foundations of PD.
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Conclusions

- Peridynamic theory treats continuous and discontinuous bodies and
deformations the same.

- Classical PDEs are obtained as a limiting case.
. Stress tensor is a nonlocal version of the classical PK stress.

- Mathematical consistency appears to help convergence properties
of fracture simulations.
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